
36-782: Homework 1

Due on 09/21/2023

1. Properties of information measures.

(a) Suppose an urn contains r red, w white, and b black balls. Let X1, . . . , Xk denote k draws from the
urn with replacement, and Y1, . . . , Yk denote k draws from the urn without replacement. What is the
relation between H(X1, . . . , Xk) and H(Y1, . . . , Yk)? Give a formal argument.
Hint: what is the marginal distribution of Yj, for 1 ≤ j ≤ k? use this distribution along with “condi-
tioning reduces entropy”.

(b) For some n ≥ 2, let Xn = (X1, . . . , Xn) denote a random variable on Xn with joint distribu-
tion Q ≡ QXn , and let Y1, . . . , Yn denote n independent X -valued random variables with joint dis-
tribution P ≡

∏n
i=1 PYi . For any i ∈ [n], we use Q(i) and P (i) to denote the distributions of

X(i) = (X1, . . . , Xi−1, Xi+1, . . . , Xn) and Y (i) = (Y1, . . . , Yi−1, Yi+1, . . . , Yn) respectively. Then, prove
the following inequality:

Dkl(Q ∥ P ) ≥ 1

n− 1

n∑
i=1

Dkl(Q
(i) ∥ P (i)).

Hint: start with Han’s inequality for entropy of Q. Then, use the fact that D(Q ∥ P ) = −H(Q) +∑
xn q(xn) log(1/p(xn)).

(c) Suppose X is an X -valued random variable, with |X | = m. Let π : X → X denote a random bijection,
drawn independently of X (i.e., drawn from the set of m! possible bijections, or permutations of the
elements of X ). Then, show that H(πX) ≥ H(X).

(3 + 4 + 3 points)

2. Entropy of stationary processes. Let {Xn : n ∈ N} denote an X -valued stationary stochastic
process, with |X | < ∞. Recall that the distribution of a stationary process is shift-invariant: that is, for all
j, k ∈ N, we have

P (Xi1 = x1, Xi2 = x2, . . . , Xij = xj) = P (Xi1+k = x1, Xi2+k = x2, . . . , Xij+k = xj).

(a) Show that the following is true:

lim
n→∞

H(X1, X2, . . . , Xn)

n
= lim

n→∞
H(Xn|X1, . . . , Xn−1).

Hint: show that H(Xn|Xn−1) is nonincreasing, and use it to argue that limn→∞ H(Xn|Xn−1) exists.
Next, use the fact that if a real-valued sequence (an)n≥1 converges to a, then so does the sequence
(bn)n≥1, with bn = (1/n)

∑n
i=1 ai, to show the equality.

(b) Which one is larger; limn→∞ H(Xn)/n or H(X1)? Why?

(c) What is the value of limn→∞
1
nI(X

n;X2n
n+1)?
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(d) Let Y denote another finite alphabet, and suppose φ : X → Y is a (deterministic) mapping from X to
Y. For any i ∈ N, let Yi denote the random variable φ(Xi). Then, show that

lim
n→∞

H(Y n)

n
≤ lim

n→∞

H(Xn)

n
.

(3 + 1 + 2 + 4 points)

3. The method of types. Let X = {1, 2, . . . ,m}, and for any sequence xn = (x1, . . . , xn) ∈ Xn, we

define the “type” of xn as P̂xn = (n1/n, n2/n, . . . , nm/n) ∈ [0, 1]m, where ni ≡ ni(x
n) =

∑n
j=1 1xj=i. In

other words, the type of xn is simply the empirical probability distribution defined by the observations
xn = (x1, . . . , xn) on the alphabet X .

(a) Let Pn denote the set of all possible types with denominator n (that is, constructed using sequences
xn of length n). Then, what is |Pn|? Express your answer as a binomial coefficient.

(b) Show that |Pn| ≤ (n+ 1)m. That is, the number of distinct types grows polynomially with n.

(c) Let X1, X2, . . . , Xn be i.i.d. draws of an X -valued random variable with a distribution Q. Then, show
that for any xn ∈ Xn, we have

Qn(Xn = xn) = 2−n(H(P̂xn )+Dkl(P̂xn∥Q)).

(d) For any (non-random) P̂ ∈ Pn (i.e., a possible empirical distribution with denominator n), let T (P̂ ) ⊂
Xn denote all sequences xn of length n with type P̂ . For example, if X = {1, 2}, and P̂ = (1/3, 2/3),

then for n = 3, we have T (P̂ ) = {(1, 2, 2), (2, 1, 2), (2, 2, 1)}. Using the result of part (c), show that

|T (P̂ )| ≤ 2nH(P̂ ).

Note that it is also possible to show that |T (P̂ )| ≥ 2nH(P̂ )/|Pn|, which can be further lower bounded,

due to (b), by 2nH(P̂ )(n+ 1)−m.

(e) Let ∆m denote all pmfs on X , and let E denote any closed subset of ∆m. For X1, . . . , Xn
i.i.d.∼ Q,

let P̂Xn denote the empirical distribution of Xn. Using the notation Qn(E) to denote Qn(PXn ∈ E),
show that

Qn(E) ≤ (n+ 1)m2−nDkl(P
∗∥Q), where P ∗ := argmin

P∈E
Dkl(P ∥ Q).

Use this to conclude that

lim inf
n→∞

− 1

n
log (Qn(E)) ≤ Dkl(P

∗ ∥ Q).

(2 + 1 + 2 + 2 + 3 points)

4. Counting via entropy. Let X denote a finite alphabet, and for some n ∈ N, let FN denote a collection
of subsets of [n] satisfying the property that

|{E ∈ F : i ∈ E}| ≥ N, for all i ∈ [n].

In words, each i ∈ [n] appears in at least N distinct subsets of [n] contained in FN .

(a) Let X1, X2, . . . , Xn denote X valued random variables. Then, show that

H(X1, . . . , Xn) ≤
1

N

∑
E∈FN

H(XE), (1)

where we use XE to denote {Xi : i ∈ E}.
Hint: Consider any set E ∈ FN , and use chain rule to expand H(XE). Then, lower bound this quantity
by conditioning on additional terms. Finally, sum over all E ∈ FN , and use the defining property of
FN , to lower bound the sum with NH(Xn).
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(b) Show that by suitable choices of the class FN , we can recover (i) the result that entropy is subaddi-
tive (i.e., H(Xn) ≤

∑n
i=1 H(Xi)), and (ii) Han’s inequality for entropy, from (1).

(c) Let Sn ⊂ R3 denote n distinct points in a three dimensional euclidean space. Suppose these points
have n1 distinct projections on the XY plane, n2 distinct projections on the Y Z plane, and n3 distinct
projections on the ZX plane. Then, use (1) to show that

n2 ≤ n1n2n3.

(d) Generalize the result of part (c) to arbitrary dimensions d ≥ 3. Formally, let Sn ⊂ Rd denote n points
in Rd. Suppose the projection of Sn along the ith coordinate (i.e., along the hyperplane normal to the
ith coordinate axis) has ni distinct points. Then, we have

nd−1 ≤
d∏

i=1

ni.

(3 + 1 + 4 + 2 points)

5. Generalized Fano’s inequality for statistical applications. In this problem, we will derive a
general form of Fano’s inequality that is useful in obtaining minimax lower bounds in various statistical
problems.

Let P(X ) denote a class of probability distributions on a finite alphabet X , and let Θ denote a space of
parameters, with an associated pseudo-metric d : Θ × Θ → [0,∞). Let θ : P(X ) → Θ denote a mapping,
that assigns a parameter in Θ to each distribution in P(X ). Consider r distributions P1, . . . , Pr ∈ P(X ),
and introduce θi = θ(Pi) for i ∈ [r]. Assume the following two statements hold (for some constants α, β):

d(θi, θj) ≥ α, for all i ̸= j, and Dkl(Pi, Pj) ≤ β, for all i, j.

Let U be a uniformly distributed random variable over [r], and let X denote the random variable with

X|U=i ∼ Pi. Finally, let Z = argmini∈[r] d(θi, θ̂(X)), with ties broken arbitrarily. Note that U → X → Z
form a Markov chain.

(a) Show that the worst case estimation risk can be lower bounded by the probability of error in a hypothesis
test:

max
i∈[r]

Ei[d(θi, θ̂(X))] ≥ α

2
P (Z ̸= U) . (2)

(b) Obtain the following bound on the mutual information between U and X:

I(X;U) = I(U ;X) ≤ 1

r2

r∑
i=1

r∑
j=1

Dkl(Pi ∥ Pj).

Hint: recall that relative entropy is a convex functional.

(c) Use the previous result, along with the usual Fano’s inequality, to show

P (Z ̸= U) log(r − 1) ≥ log r − 1

r2

∑
i,j

Dkl(Pi ∥ Pj)− 1. (3)

(d) Combine (2) and (3) to get

max
i∈[r]

Ei[d(θi, θ̂(X))] ≥ α

2

(
1− β + 1

log r

)
.

Thus the minimax estimation error (LHS above) is large, if there exist many distributions (i.e., large
r) whose parameters are well-separated in Θ (i.e., large α), but they are statistically almost indistin-
guishable (i.e., small β).

(3+3+3+1 points)
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