36-782: Homework 1
 Due on 09/21/2023

1. Properties of information measures.

(a) Suppose an urn contains r red, w white, and b black balls. Let X_{1}, \ldots, X_{k} denote k draws from the urn with replacement, and Y_{1}, \ldots, Y_{k} denote k draws from the urn without replacement. What is the relation between $H\left(X_{1}, \ldots, X_{k}\right)$ and $H\left(Y_{1}, \ldots, Y_{k}\right)$? Give a formal argument.
Hint: what is the marginal distribution of Y_{j}, for $1 \leq j \leq k$? use this distribution along with "conditioning reduces entropy".
(b) For some $n \geq 2$, let $X^{n}=\left(X_{1}, \ldots, X_{n}\right)$ denote a random variable on \mathcal{X}^{n} with joint distribution $Q \equiv Q_{X^{n}}$, and let Y_{1}, \ldots, Y_{n} denote n independent \mathcal{X}-valued random variables with joint distribution $P \equiv \prod_{i=1}^{n} P_{Y_{i}}$. For any $i \in[n]$, we use $Q^{(i)}$ and $P^{(i)}$ to denote the distributions of $X^{(i)}=\left(X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}\right)$ and $Y^{(i)}=\left(Y_{1}, \ldots, Y_{i-1}, Y_{i+1}, \ldots, Y_{n}\right)$ respectively. Then, prove the following inequality:

$$
D_{\mathrm{kl}}(Q \| P) \geq \frac{1}{n-1} \sum_{i=1}^{n} D_{\mathrm{kl}}\left(Q^{(i)} \| P^{(i)}\right)
$$

Hint: start with Han's inequality for entropy of Q. Then, use the fact that $D(Q \| P)=-H(Q)+$ $\sum_{x^{n}} q\left(x^{n}\right) \log \left(1 / p\left(x^{n}\right)\right)$.
(c) Suppose X is an \mathcal{X}-valued random variable, with $|\mathcal{X}|=m$. Let $\pi: \mathcal{X} \rightarrow \mathcal{X}$ denote a random bijection, drawn independently of X (i.e., drawn from the set of m ! possible bijections, or permutations of the elements of $\mathcal{X})$. Then, show that $H(\pi X) \geq H(X)$.

$$
(3+4+3 \text { points })
$$

2. Entropy of stationary processes. Let $\left\{X_{n}: n \in \mathbb{N}\right\}$ denote an \mathcal{X}-valued stationary stochastic process, with $|\mathcal{X}|<\infty$. Recall that the distribution of a stationary process is shift-invariant: that is, for all $j, k \in \mathbb{N}$, we have

$$
P\left(X_{i_{1}}=x_{1}, X_{i_{2}}=x_{2}, \ldots, X_{i_{j}}=x_{j}\right)=P\left(X_{i_{1}+k}=x_{1}, X_{i_{2}+k}=x_{2}, \ldots, X_{i_{j}+k}=x_{j}\right)
$$

(a) Show that the following is true:

$$
\lim _{n \rightarrow \infty} \frac{H\left(X_{1}, X_{2}, \ldots, X_{n}\right)}{n}=\lim _{n \rightarrow \infty} H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)
$$

Hint: show that $H\left(X_{n} \mid X^{n-1}\right)$ is nonincreasing, and use it to argue that $\lim _{n \rightarrow \infty} H\left(X_{n} \mid X^{n-1}\right)$ exists. Next, use the fact that if a real-valued sequence $\left(a_{n}\right)_{n \geq 1}$ converges to a, then so does the sequence $\left(b_{n}\right)_{n \geq 1}$, with $b_{n}=(1 / n) \sum_{i=1}^{n} a_{i}$, to show the equality.
(b) Which one is larger; $\lim _{n \rightarrow \infty} H\left(X^{n}\right) / n$ or $H\left(X_{1}\right)$? Why?
(c) What is the value of $\lim _{n \rightarrow \infty} \frac{1}{n} I\left(X^{n} ; X_{n+1}^{2 n}\right)$?
(d) Let \mathcal{Y} denote another finite alphabet, and suppose $\varphi: \mathcal{X} \rightarrow \mathcal{Y}$ is a (deterministic) mapping from \mathcal{X} to \mathcal{Y}. For any $i \in \mathbb{N}$, let Y_{i} denote the random variable $\varphi\left(X_{i}\right)$. Then, show that

$$
\lim _{n \rightarrow \infty} \frac{H\left(Y^{n}\right)}{n} \leq \lim _{n \rightarrow \infty} \frac{H\left(X^{n}\right)}{n}
$$

$$
(3+1+2+4 \text { points })
$$

3. The method of types. Let $\mathcal{X}=\{1,2, \ldots, m\}$, and for any sequence $\boldsymbol{x}^{n}=\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n}$, we define the "type" of \boldsymbol{x}^{n} as $\widehat{P}_{\boldsymbol{x}^{n}}=\left(n_{1} / n, n_{2} / n, \ldots, n_{m} / n\right) \in[0,1]^{m}$, where $n_{i} \equiv n_{i}\left(\boldsymbol{x}^{n}\right)=\sum_{j=1}^{n} \mathbf{1}_{x_{j}=i}$. In other words, the type of \boldsymbol{x}^{n} is simply the empirical probability distribution defined by the observations $\boldsymbol{x}^{n}=\left(x_{1}, \ldots, x_{n}\right)$ on the alphabet \mathcal{X}.
(a) Let \mathcal{P}_{n} denote the set of all possible types with denominator n (that is, constructed using sequences \boldsymbol{x}^{n} of length n). Then, what is $\left|\mathcal{P}_{n}\right|$? Express your answer as a binomial coefficient.
(b) Show that $\left|\mathcal{P}_{n}\right| \leq(n+1)^{m}$. That is, the number of distinct types grows polynomially with n.
(c) Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. draws of an \mathcal{X}-valued random variable with a distribution Q. Then, show that for any $\boldsymbol{x}^{n} \in \mathcal{X}^{n}$, we have

$$
Q^{n}\left(X^{n}=\boldsymbol{x}^{n}\right)=2^{-n\left(H\left(\widehat{P}_{\boldsymbol{x}^{n}}\right)+D_{\mathrm{kl} 1}\left(\widehat{P}_{\boldsymbol{x}^{n}} \| Q\right)\right)}
$$

(d) For any (non-random) $\widehat{P} \in \mathcal{P}_{n}$ (i.e., a possible empirical distribution with denominator n), let $T(\widehat{P}) \subset$ \mathcal{X}^{n} denote all sequences \boldsymbol{x}^{n} of length n with type \widehat{P}. For example, if $\mathcal{X}=\{1,2\}$, and $\widehat{P}=(1 / 3,2 / 3)$, then for $n=3$, we have $T(\widehat{P})=\{(1,2,2),(2,1,2),(2,2,1)\}$. Using the result of part (c), show that

$$
|T(\widehat{P})| \leq 2^{n H(\widehat{P})}
$$

Note that it is also possible to show that $|T(\widehat{P})| \geq 2^{n H(\widehat{P})} /\left|\mathcal{P}_{n}\right|$, which can be further lower bounded, due to (b), by $2^{n H(\widehat{P})}(n+1)^{-m}$.
(e) Let Δ_{m} denote all pmfs on \mathcal{X}, and let E denote any closed subset of Δ_{m}. For $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} Q$, let $\widehat{P}_{X^{n}}$ denote the empirical distribution of X^{n}. Using the notation $Q^{n}(E)$ to denote $Q^{n}\left(P_{X^{n}} \in E\right)$, show that

$$
Q^{n}(E) \leq(n+1)^{m} 2^{-n D_{\mathrm{kl}}\left(P^{*} \| Q\right)}, \quad \text { where } \quad P^{*}:=\underset{P \in E}{\arg \min } D_{\mathrm{kl}}(P \| Q)
$$

Use this to conclude that

$$
\liminf _{n \rightarrow \infty}-\frac{1}{n} \log \left(Q^{n}(E)\right) \leq D_{\mathrm{kl}}\left(P^{*} \| Q\right)
$$

$$
(2+1+2+2+3 \text { points })
$$

4. Counting via entropy. Let \mathcal{X} denote a finite alphabet, and for some $n \in \mathbb{N}$, let \mathcal{F}_{N} denote a collection of subsets of $[n]$ satisfying the property that

$$
|\{E \in \mathcal{F}: i \in E\}| \geq N, \quad \text { for all } i \in[n]
$$

In words, each $i \in[n]$ appears in at least N distinct subsets of $[n]$ contained in \mathcal{F}_{N}.
(a) Let $X_{1}, X_{2}, \ldots, X_{n}$ denote \mathcal{X} valued random variables. Then, show that

$$
\begin{equation*}
H\left(X_{1}, \ldots, X_{n}\right) \leq \frac{1}{N} \sum_{E \in \mathcal{F}_{N}} H\left(X_{E}\right) \tag{1}
\end{equation*}
$$

where we use X_{E} to denote $\left\{X_{i}: i \in E\right\}$.
Hint: Consider any set $E \in \mathcal{F}_{N}$, and use chain rule to expand $H\left(X_{E}\right)$. Then, lower bound this quantity by conditioning on additional terms. Finally, sum over all $E \in \mathcal{F}_{N}$, and use the defining property of \mathcal{F}_{N}, to lower bound the sum with $N H\left(X^{n}\right)$.
(b) Show that by suitable choices of the class \mathcal{F}_{N}, we can recover (i) the result that entropy is subadditive (i.e., $H\left(X^{n}\right) \leq \sum_{i=1}^{n} H\left(X_{i}\right)$), and (ii) Han's inequality for entropy, from (1).
(c) Let $S_{n} \subset \mathbb{R}^{3}$ denote n distinct points in a three dimensional euclidean space. Suppose these points have n_{1} distinct projections on the $X Y$ plane, n_{2} distinct projections on the $Y Z$ plane, and n_{3} distinct projections on the $Z X$ plane. Then, use (1) to show that

$$
n^{2} \leq n_{1} n_{2} n_{3}
$$

(d) Generalize the result of part (c) to arbitrary dimensions $d \geq 3$. Formally, let $S_{n} \subset \mathbb{R}^{d}$ denote n points in \mathbb{R}^{d}. Suppose the projection of S_{n} along the $i^{\text {th }}$ coordinate (i.e., along the hyperplane normal to the $i^{\text {th }}$ coordinate axis) has n_{i} distinct points. Then, we have

$$
n^{d-1} \leq \prod_{i=1}^{d} n_{i}
$$

$$
(3+1+4+2 \text { points })
$$

5. Generalized Fano's inequality for statistical applications. In this problem, we will derive a general form of Fano's inequality that is useful in obtaining minimax lower bounds in various statistical problems.

Let $\mathcal{P}(\mathcal{X})$ denote a class of probability distributions on a finite alphabet \mathcal{X}, and let Θ denote a space of parameters, with an associated pseudo-metric $d: \Theta \times \Theta \rightarrow[0, \infty)$. Let $\theta: \mathcal{P}(\mathcal{X}) \rightarrow \Theta$ denote a mapping, that assigns a parameter in Θ to each distribution in $\mathcal{P}(\mathcal{X})$. Consider r distributions $P_{1}, \ldots, P_{r} \in \mathcal{P}(\mathcal{X})$, and introduce $\theta_{i}=\theta\left(P_{i}\right)$ for $i \in[r]$. Assume the following two statements hold (for some constants α, β):

$$
d\left(\theta_{i}, \theta_{j}\right) \geq \alpha, \text { for all } i \neq j, \quad \text { and } \quad D_{\mathrm{kl}}\left(P_{i}, P_{j}\right) \leq \beta, \text { for all } i, j
$$

Let U be a uniformly distributed random variable over $[r]$, and let X denote the random variable with $\left.X\right|_{U=i} \sim P_{i}$. Finally, let $Z=\arg \min _{i \in[r]} d\left(\theta_{i}, \hat{\theta}(X)\right)$, with ties broken arbitrarily. Note that $U \rightarrow X \rightarrow Z$ form a Markov chain.
(a) Show that the worst case estimation risk can be lower bounded by the probability of error in a hypothesis test:

$$
\begin{equation*}
\max _{i \in[r]} \mathbb{E}_{i}\left[d\left(\theta_{i}, \hat{\theta}(X)\right)\right] \geq \frac{\alpha}{2} \mathbb{P}(Z \neq U) \tag{2}
\end{equation*}
$$

(b) Obtain the following bound on the mutual information between U and X :

$$
I(X ; U)=I(U ; X) \leq \frac{1}{r^{2}} \sum_{i=1}^{r} \sum_{j=1}^{r} D_{\mathrm{kl}}\left(P_{i} \| P_{j}\right)
$$

Hint: recall that relative entropy is a convex functional.
(c) Use the previous result, along with the usual Fano's inequality, to show

$$
\begin{equation*}
\mathbb{P}(Z \neq U) \log (r-1) \geq \log r-\frac{1}{r^{2}} \sum_{i, j} D_{\mathrm{kl}}\left(P_{i} \| P_{j}\right)-1 \tag{3}
\end{equation*}
$$

(d) Combine (2) and (3) to get

$$
\max _{i \in[r]} \mathbb{E}_{i}\left[d\left(\theta_{i}, \hat{\theta}(X)\right)\right] \geq \frac{\alpha}{2}\left(1-\frac{\beta+1}{\log r}\right)
$$

Thus the minimax estimation error (LHS above) is large, if there exist many distributions (i.e., large r) whose parameters are well-separated in Θ (i.e., large α), but they are statistically almost indistinguishable (i.e., small β).

