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Sequential Two-Sample Testing

• Given a stream of paired observations on X × X

(X1, Y1), (X2, Y2), . . . ∼ PX × PY i.i.d.,

• decide between the hypotheses:

H0 : PX = PY and H1 : PX ̸= PY.

Goal

For α ∈ (0, 1), construct a level-α sequential test of power one.

• Under H0: continue forever w.p. ≥ 1− α.
• Under H1: stop sampling, and reject the null as soon as
possible.
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Batch Two-Sample Testing

• Here, we have batches of observations: (X1, . . . , Xn) and
(Y1, . . . , Ym) drawn i.i.d.from PX and PY respectively.

• A popular class of batch tests based on statistical distances
d : P(X )× P(X ) → R.

• Define a test statistic Tn,m = d
(
P̂X,n, P̂Y,m

)
.

• Reject the null, if Tn,m is large.

• E.g., χ2-test, Kolmogorov-Smirnov (KS) test, kernel-MMD test.

• Theoretical and empirical properties have been well studied.

• No such general framework for constructing sequential
two-sample tests of power one.
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Prior Sequential Nonparametric Tests of Power One
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• Darling & Robbins (1968): based on time-uniform DKW
inequalitites for univariate observations.

• Balsubramani & Ramdas (2016): based on a confidence sequence
(CS) for linear-time kernel-MMD statistic

• Lheritier & Cazals (2017): based on sequential binary classifiers

• Howard & Ramdas (2021): based on CSs using forward
supermartingales

• Manole & Ramdas (2021): based on CSs using reverse
submartingales.



Prior Sequential Nonparametric Tests of Power One
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All existing methods either have strong theoretical guarantees
or good empirical performance; but not both.
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All existing methods either have strong theoretical guarantees
or good empirical performance; but not both.

This Talk

• A fundamentally new framework for designing powerful
sequential two-sample tests.

• We take the perspective of a fictitious bettor, repeatedly
betting on the observations to disprove the null.

• Constraints: The bets must be fair under H0, and the bettor
cannot borrow money.

• The gain in the bettor’s wealth (i.e., Wt/W0) is a measure of
evidence collected against the null.



The Betting Game
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Bettor begins with an initial wealth, W0 = 1.

For t = 1, 2, . . . :
• Bettor selects a function gt : X → [−1/2, 1/2].

• defines a fair payoff function under H0,
ht(x, y) = gt(x)− gt(y).

• Bettor chooses a fraction, λt ∈ [0, 1], of his current wealth,
Wt−1, to gamble.

• The next paired observation, (Xt, Yt), is revealed.

• Bettor’s wealth is updated as follows:

Wt = Wt−1 × (1− λt) +Wt−1λt
(
1+ ht(Xt, Yt)

)
= W0 ×

t∏
i=1

(
1+ λi

(
gi(Xi)− gi(Yi)

))



From Betting to Sequential Testing
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Under H0, we have E[gt(Xt)− gt(Yt)|Ft−1] = 0. Hence, {Wt : t ≥ 0} is a
test martingale — a non-negative martingale with an initial value 1.
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P
(
∃t ≥ 0 : Wt ≥

1
α

)
≤ α.

• Define the test (i.e., a stopping time):

τ := min{t ≥ 1 : Wt ≥ 1/α}.

• For arbitrary (predictable) sequences {(gt, λt) : t ≥ 1}, Ville’s inequality
implies

P (τ < ∞) ≤ α, under H0.



Performance of the test under H1
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Under H1, we require {Wt : t ≥ 0} to grow rapidly to infinity.

• Consistency.

P (∃n ≥ 1 : Wn ≥ 1/α) = 1 ⇒ P(τ < ∞) = 1.

• Exponential consistency.

lim inf
n→∞

−1
n log (P(Wn < 1/α)) > 0 ⇒ lim inf

n→∞

−1
n log (P(τ > n)) > 0.

• Finite Expected Stopping Time.

∑
n≥0

P
(
Wn <

1
α

)
< ∞ ⇒ E[τ ] =

∞∑
n=0

P (τ > n) < ∞.
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Summary so far

• We defined a sequential test: τ = min{t ≥ 1 : Wt ≥ 1/α}.

• {Wt : t ≥ 1} is the wealth of a fictitious bettor, betting on the
observations in a repeated game with W0 = 1.

• Under H0, for arbitrary predictable {(gt, λt) : t ≥ 1}, we have
P (τ < ∞) ≤ α.

• Under H1, statistical properties of τ depend on how quickly Wt
grows to infinity.

• this depends strongly on the choice of {(λt, gt) : t ≥ 1}.

• Rest of the talk: A principled approach for selecting
{(λt,gt) : t ≥ 1}.
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Overview of our approach

• Step 1: Select an appropriate function class G
• Or equivalently, an Integral Probability Metric (IPM)

• Step 2: Design an “Oracle Test”
• Uses terms, g∗ and λ∗, depending on the unknown PX and PY

• Step 3: Design a practical sequential test
• Uses a sequence of predictable estimates of g∗ and λ∗
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Step 1 – Select a function class G

• For simplicity, we assume that G consists of functions taking
values in [−1/2, 1/2].

• Can define

dG(PX,PY) = max
g∈G

EPX [g(X)]− EPY [g(Y)], (1)

which is a metric if G is rich enough.

• Witness function

g∗ ∈ argmax
g∈G

EPX [g(X)]− EPY [g(Y)]. (2)

• g∗ provides the maximum contrast between PX and PY
• If PX = PY, then g∗ is an arbitrary element of G
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Step 2 – Oracle Test

• Construct the ‘oracle’ process {W∗
t : t ≥ 0}, with W∗

0 = 1, and

W∗
t = W∗

t−1 ×
(
1+ λ∗(g∗(Xt)− g∗(Yt)

))
,

• where λ∗ is the log-optimal betting fraction:

λ∗ ∈ argmax
λ∈(−1,1)

E [log(1+ λ(g∗(X)− g∗(Y)))] .

• Define the ‘oracle test’: τ∗ = min
{
t ≥ 1 : W∗

t ≥ 1
α

}
.

• The test τ∗ is exponentially consistent, and has a finite expected
stopping time.
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Step 3 – Practical Test

• g∗ and λ∗ in τ∗ are not known ⇒ Use data-driven estimates.

• A prediction strategy (AP) to select {gt : t ≥ 1} ≈ g∗.
• Specific choice of AP will depend on G.

• A betting strategy (AB) to select {λt : t ≥ 1} ≈ λ∗.
• Existing methods, such as Online Newton Step (ONS), are sufficient
for our purposes.

• Construct the wealth process

Wt = Wt−1 ×
(
1+ λt

(
gt(Xt)− gt(Yt)

))
.

• Define the level-α test: τ = min
{
t ≥ 1 : Wt ≥ 1

α

}
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Summary: Steps of our sequential test
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Initialization:

• A function class G
• a prediction strategy (AP) to select {gt : t ≥ 1}
• ONS betting strategy (AB) to select {λt : t ≥ 1}
• W0 = 1

For t = 1, 2, . . . :
• Get the next gt from the prediction strategy, AP.

• Get the next λt from the betting strategy, AB.

• Observe the next pair (Xt, Yt).

• Update Wt = Wt−1 ×
(
1+ λt

(
gt(Xt)− gt(Yt)

))
.

• Reject H0, if Wt ≥ 1/α.



Performance Guarantees
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Smaller Regret of AP ⇒ Faster growth of Wt ⇒ Stronger
properties of the test τ .



Performance Guarantees
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Regret of AP

Rn(AP) = sup
g∈G

[( n∑
t=1

g(Xt)− g(Yt)
)

−

( n∑
t=1

gt(Xt)− gt(Yt)
)]

.
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Regret of AP

Rn(AP) = sup
g∈G

[( n∑
t=1

g(Xt)− g(Yt)
)

−

( n∑
t=1

gt(Xt)− gt(Yt)
)]

.

Regret-Power Connections under H1 (Informal)

• If limn→∞ Rn/n is smaller than dG(PX,PY) w.p. 1, the test τ
is consistent.

• If Rn/n→ 0 with sufficiently large probability, then E[τ ] is
finite.

• If the Rn/n→ 0 w.p. 1, then the test τ is exponentially
consistent.



Application 1: Sequential KS Test
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• X = R, and G = {1(−∞,u] − 0.5 : u ∈ R}.

• Plug-in prediction strategy (Aplug-in): gt = 1(−∞,ut] − 0.5, where

ut ∈ argmax
u∈R

F̂X,t−1(u)− F̂Y,t−1(u).

• For any n ≥ 1, Rn(Aplug-in)/n = O(1/
√
n), w.p. 1− 1/n2.

• Hence, the resulting test is consistent, and satisfies
E[τ ] = O

(
1/d2KS(PX,PY)

)
under H1.

• There exist distributions on which any test, τ ′, must have
E[τ ′] = Ω

(
1/d2KS(PX,PY)

)
.



Application 2: Sequential Kernel MMD Test
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• General X , and G = {g ∈ RKHS(k) : ∥g∥k ≤ 1}.

• Projected Gradient Ascent prediction strategy (APGA)

• APGA satisfies Rn(APGA)/n = O(1/
√
n), w.p. 1.

• Hence, the resulting test is exponentially consistent, and satisfies
E[τ ] = O

(
1/d2MMD(PX,PY)

)
under H1.

• There exist distributions on which any test, τ ′, satisfies
E[τ ′] = Ω

(
1/d2MMD(PX,PY)

)
, under H1.



An Example
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Under H0, the wealth process of the bettor rarely exceeds the level
1/α.

PX = N(0, 1)

PY = N(0, 1)



An Example
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Under H1, the wealth process with the plug-in prediction strategy,
grows at an exponential rate.

PX = N(0, 1)

PY = N(ε, 1)



Extension to time-varying distributions
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Our ideas easily extend to the following case:

For t = 1, 2, . . . :
• Bettor selects gt and λt.

• Adversary selects distributions PX,t and PY,t.

• The pair, (Xt, Yt) ∼ PX,t × PY,t is revealed.

• Update the wealth: Wt = Wt−1 ×
(
1+ λt

(
gt(Xt)− gt(Yt)

))
.

• Reject the null if Wt ≥ 1/α.

Under some mild assumptions on G, the test defined above is
consistent.



Other Extensions and Generalizations

• Relaxing the assumption of paired observations.

• Relaxing the boundedness assumption on the functions in G.

• A general problem unifying several tasks such as two-sample
testing, independence testing, and symmetry testing.
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Thank you.
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Details of Regret-Power Result

• lim supn→∞
Rn
n < dG(PX,PY) a.s. ⇒ PPXY(τ < ∞) = 1.

• For a sequence rn → 0, define En = {Rn/n ≤ rn}. Then,∑
n≥1

PPXY(Ecn) < ∞ ⇒ EPXY [τ ] < ∞.

• If PPXY(Ecn) = 0 for some rn → 0, then we have

lim inf
n→∞

−1
2n PPXY(τ > n) = β∗. (optimal exponent)



Testing invariance to an operator

• Given a stream of observations: U1,U2, . . . on U , drawn i.i.d.from
PU.

• Let T : U → U be a known operator.
• Consider the problem:

H0 : PU = PU ◦ T−1, versus H1 : PU ̸= PU ◦ T−1.

• This formulation unifies several problems such as two-sample
testing, independence testing, and symmetry testing.

• For two-sample testing:

U = X × X , U = (X, Y), PU = PX × PY
T : X × X → X ×X , such that T(x, y) = (y, x).
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