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Sequential Two-Sample Testing

- Given a stream of paired observations on X x X
(X1, Y1), (Xz, Yz), 000 R PX X Py IId,
- decide between the hypotheses:

Ho : Px = Py and qupx#Py.

For a € (0,1), construct a level-a sequential test of power one.

- Under Hg: continue forever w.p. > 1— a.

- Under Hq: stop sampling, and reject the null as soon as
possible.




Batch Two-Sample Testing

- Here, we have batches of observations: (Xi,...,X,) and
(Ya,...,Ym) drawn i.i.d.from Px and Py respectively.

- A popular class of batch tests based on statistical distances
d:P(X) x P(X) = R.
- Define a test statistic Ty m = d(lsx,n,lsv,m).
- Reject the null, if Ty,m is large.

- E.g, x’-test, Kolmogorov-Smirnov (KS) test, kernel-MMD test.
- Theoretical and empirical properties have been well studied.

- No such general framework for constructing sequential
two-sample tests of power one.



Prior Sequential Nonparametric Tests of Power One

- Darling & Robbins (1968): based on time-uniform DKW
inequalitites for univariate observations.

- Balsubramani & Ramdas (2016): based on a confidence sequence
(CS) for linear-time kernel-MMD statistic

- Lheritier & Cazals (2017): based on sequential binary classifiers

- Howard & Ramdas (2021): based on CSs using forward
supermartingales

- Manole & Ramdas (2021): based on CSs using reverse
submartingales.
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All existing methods either have strong theoretical guarantees
or good empirical performance; but not both.
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This Talk

- A fundamentally new framework for designing powerful
sequential two-sample tests.

- We take the perspective of a fictitious bettor, repeatedly
betting on the observations to disprove the null.

- Constraints: The bets must be fair under Hp, and the bettor
cannot borrow money.

- The gain in the bettor's wealth (i.e., W;/Wy) is a measure of
evidence collected against the null.




The Betting Game

Bettor begins with an initial wealth, Wy = 1.

Fort=1,2,...:
- Bettor selects a function g; : X — [-1/2,1/2].
- defines a fair payoff function under Ho,
hi(x,¥) = ge(x) — ge(y)-
- Bettor chooses a fraction, A; € [0, 1], of his current wealth,
W;_4, to gsamble.

- The next paired observation, (X;, Y;), is revealed.

- Bettor's wealth is updated as follows:

Wt = Wt,1 X (1 = At) + Wt71)\t(’| + ht(Xt, Yt))

=Wy x ﬁ (1 + Xi(9i(X) - g,»(Y,-)))

i=1




From Betting to Sequential Testing

Under Hoy, we have E[g:(X;) — g¢(Y:)|Fi—1] = 0. Hence, {W; : t > 0} is a
test martingale — a non-negative martingale with an initial value 1.
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From Betting to Sequential Testing

Under Hoy, we have E[g:(X;) — g¢(Y:)|Fi—1] = 0. Hence, {W; : t > 0} is a
test martingale — a non-negative martingale with an initial value 1.

Ville’s Inequality (1939)

For any test martingale {W; : t > 0} and an « € (0, 1], we have

1
P(EIt>O:Wt>)<a.
o

- Define the test (i.e., a stopping time):
T=min{t >1: W; >1/a}.
- For arbitrary (predictable) sequences {(gt, A¢) : t > 1}, Ville’s inequality

implies
P(r < o) <a, under H.

a1
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[ Under H;, we require {W; : t > 0} to grow rapidly to infinity.

Faster growth of Wy => Stronger statistical properties of 7
- Consistency.
PEn>1:W,>1a)=1 = Plr<o)=1
- Exponential consistency.

—1 —1
liminf e log (P(Wp < 1/a)) >0 = Iinm inf . log (P(T > n)) > 0.
—00

n—oo

- Finite Expected Stopping Time.

ZP(WH<;><OO = E[T]:iP(T>n)<oo.

n>0 n=0



Summary so far

- We defined a sequential test: 7 =min{t >1: W; > 1/a}.

- {W; :t > 1} is the wealth of a fictitious bettor, betting on the
observations in a repeated game with Wy = 1.

- Under H,, for arbitrary predictable {(g¢, A¢) : t > 1}, we have
P(r <) <a.

- Under H,, statistical properties of = depend on how quickly W;
grows to infinity.

- this depends strongly on the choice of {(At,g¢) : t > 1}.

- Rest of the talk: A principled approach for selecting
{()\bgt) t> 1}



Overview of our approach

- Step 1: Select an appropriate function class G
- Or equivalently, an Integral Probability Metric (IPM)

- Step 2: Design an “Oracle Test”
- Uses terms, g* and \*, depending on the unknown Px and Py

- Step 3: Design a practical sequential test
- Uses a sequence of predictable estimates of g* and \*
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- For simplicity, we assume that G consists of functions taking
values in [-1/2,1/2].
- Can define

dg(Px, Py) = UERS Ep, [9(X)] — Ep,[g()], (1)

which is a metric if G is rich enough.
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- For simplicity, we assume that G consists of functions taking
values in [-1/2,1/2].

- Can define
dg(Px, Py) = UERS Ep, [9(X)] — Ep,[g()], (1)

which is a metric if G is rich enough.
- Witness function

9" e arg max Ep [9(X)] — Ep, [9(Y)]- (2)

- g* provides the maximum contrast between Py and Py

- If Px = Py, then g* is an arbitrary element of G
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A New Interpretation of Information Rate
reproduced with permission of AT&T

By J. L. KELLY, IR.

(Manuscript received March 21, 1956)
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Step 2 - Oracle Test

- Construct the ‘oracle’ process {W} : t > 0}, with W§ =1, and
We = Wiy x (T+X(9" (X)) — 9" ()
- where \* is the log-optimal betting fraction:

A" e ireg([qf;ﬂ‘l [log(1+ A(g™(X) — g™ (V)))] -

- Define the ‘oracle test: 7* = min {t > 1: Wy > 1}.

- The test 7* is exponentially consistent, and has a finite expected
stopping time.



Step 3 - Practical Test

- g*and A* in 7* are not known = Use data-driven estimates.

- A prediction strategy (Ap) to select {g; : t > 1} ~ g*.
- Specific choice of Ap will depend on G.

- A betting strategy (Ag) to select {\¢ : t > 1} ~ \*.

- Existing methods, such as Online Newton Step (ONS), are sufficient
for our purposes.

- Construct the wealth process

Wi = Wieq x (14 Ae(9:(Xe) — 9:(Y1))) -

- Define the level-a test: 7 =min {t > 1: W; > 1

1



Summary: Steps of our sequential test

Initialization:

- A function class G

- a prediction strategy (Ap) to select {g; : t > 1}
- ONS betting strategy (Ag) to select {\; : t > 1}
* WO =1

Fort=1,2,...:
- Get the next g; from the prediction strategy, Ap.
- Get the next \; from the betting strategy, Asg.
- Observe the next pair (X, Y:).
- Update Wi = Wiq x (14 Ae(9e(Xe) — 9:(Y1)))-
- Reject Ho, if W > 1/a.




Performance Guarantees

Smaller Regret of Ap = Faster growth of W; = Stronger
properties of the test 7.
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Performance Guarantees

i () (-]

Regret-Power Connections under H; (Informal)

< Iflimp_ 00 Rn/n is smaller than dg(Px, Py) w.p. 1, the test 7
is consistent.

- If Ry/n — 0 with sufficiently large probability, then E[7] is
finite.

- If the R,/n — 0 w.p. 1, then the test 7 is exponentially
consistent.




Application 1: Sequential KS Test

- X=Rand G = {1_oo —0.5: U € R}.

- Plug-in prediction strategy (Apig-in): 9t = 1(—o0,u] — 0.5, Where

Ut € arg max ?X7t_q(u) 7/:":y7t_1(U).
uekR

- Forany n > 1, Ru(Apwg-in)/n = 0(1/+/n), w.p. 1 —1/n.

- Hence, the resulting test is consistent, and satisfies
E[r] = O (1/dks(Px, Py)) under Hi.

- There exist distributions on which any test, 7/, must have
E[r'] = Q (1/dgs(Px, Py))-

14



Application 2: Sequential Kernel MMD Test

- General X, and G = {g € RKHS(R) : ||g|lr < 1}.
- Projected Gradient Ascent prediction strategy (Apga)
- Apca satisfies Rn(Apsa)/n = O(1/4/n), w.p. 1.

- Hence, the resulting test is exponentially consistent, and satisfies
E[r] = O (1/d3mp (Px, Py)) under Hy.

- There exist distributions on which any test, 7/, satisfies
E[r]=Q (1/d§IMD(PX, Py)), under H;.



An Example

Under Hy, the wealth process of the bettor rarely exceeds the level
1/a.

10%

Px = N(0,1)
PY - N(071)

10t

Bettor's wealth (log-scale)
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An Example

Under H,, the wealth process with the plug-in prediction strategy,
grows at an exponential rate.

£=0.50

PX - N(O7 1) b £=0.75 ’ s
Py = N(e,1) e

1032

1026

102

Bettor's wealth (log-scale)
.
o
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Extension to time-varying distributions

Our ideas easily extend to the following case:

Fort=1,2,...:
- Bettor selects g: and A

- Adversary selects distributions Py and Py .
- The pair, (Xt, Yt) ~ Pxt x Py is revealed.

- Update the wealth: Wy = Wi_q x (14 Xe(g:(Xe) — g:(Y1))).

- Reject the null if Wy > 1/c.

Under some mild assumptions on G, the test defined above is
consistent.



Other Extensions and Generalizations

- Relaxing the assumption of paired observations.
- Relaxing the boundedness assumption on the functions in G.

- A general problem unifying several tasks such as two-sample
testing, independence testing, and symmetry testing.



Thank you.



Details of Regret-Power Result

- limsup,_o 22 < dg(Px,Py) as. = Pp, (T <oo)=1.

- For a sequence r, — 0, define E, = {R,/n < ry}. Then,

> Ppy(Ep) < 00 = Ep,[r] < oo

n>1

- If Pp,, (E5) = 0 for some r, — 0, then we have

liminf —Pp,, (7 > n) = B*.

Imint - (optimal exponent)



Testing invariance to an operator

- Given a stream of observations: Uy, U, ... on U, drawn i.i.d.from
Py.

- Let T: U — U be a known operator.

- Consider the problem:

Ho:Py=PyoT™", versus Hqy:Py#PyoT .

- This formulation unifies several problems such as two-sample
testing, independence testing, and symmetry testing.

- For two-sample testing:

U=XxX, U=(XY), Py=PxxPy
T: X xX—XxX, suchthat T(x,y) = (v,x).
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