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I. Sequential Changepoint Detection
▶ Problem Definition

▶ Confidence Sequences (CSs)

▶ Assumptions



Sequential Changepoint Detection
▶ Stream of independent X -valued observations: X1,X2, . . .

▶ For some T ∈ N ∪ {∞}:
▶ Xt ∼ P0 for t ≤ T, and
▶ Xt ∼ P1 ̸= P0 for t > T.

▶ Mild requirements on the distributions:
▶ Both P0,P1 are unknown, and
▶ P0,P1 ∈ P for some known class of distributions P.

▶ Decide between

H0 : T = ∞, versus H1 : T < ∞.

▶ Objective: Define a stopping time τ to declare a detection, that
▶ minimizes false alarms under H0, and
▶ has a small detection delay, (τ − T)+, under H1
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Performance Measures

4

When T = ∞ (no changepoint)

For an α ∈ (0, 1), control
▶ Average Run Length (ARL): E∞[τ ] ≥ 1

α , or

▶ the Probability of False Alarm (PFA): P∞ (τ < ∞) ≤ α



Performance Measures

4

When T = ∞ (no changepoint)

For an α ∈ (0, 1), control
▶ Average Run Length (ARL): E∞[τ ] ≥ 1

α , or

▶ the Probability of False Alarm (PFA): P∞ (τ < ∞) ≤ α

When T < ∞

Ensure that
▶ (τ − T)+ is small, either in expectation or with high

probability.

▶ The guarantee should hold for worst case choice of T.



Main Technical Tool: Confidence Sequences
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▶ Suppose X1,X2, . . . ∼ Pθ i.i.d. with θ ∈ Θ.
▶ {Ct ⊂ Θ : t ≥ 1} is a level-(1 − α) CS for θ, if

P (∀t ≥ 1 : θ ∈ Ct) ≥ 1 − α ≡ P (∃t ≥ 1 : θ ̸∈ Ct) ≤ α.
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▶ Suppose X1,X2, . . . ∼ Pθ i.i.d. with θ ∈ Θ.
▶ {Ct ⊂ Θ : t ≥ 1} is a level-(1 − α) CS for θ, if

P (∀t ≥ 1 : θ ∈ Ct) ≥ 1 − α ≡ P (∃t ≥ 1 : θ ̸∈ Ct) ≤ α.

▶ Suppose X1,X2, . . . are independent, with Xt ∼ Pθt .
▶ {Ct ⊂ Θ : t ≥ 1} is a level-(1 − α) CS for θ̃t :=

1
t
∑t

i=1 θi, if

P
(
∀t ≥ 1 : θ̃t ∈ Ct

)
≥ 1 − α ≡ P

(
∃t ≥ 1 : θ̃t ̸∈ Ct

)
≤ α.



Example: CS for Gaussian mean

▶ Suppose X1,X2, . . .
i.i.d.∼ N(θ, 1). Then, we have

P

(
∀t ≥ 1 : θ ∈

[
1
t

t∑
i=1

Xi − wt,
1
t

t∑
i=1

Xi + wt

])
≥ 1 − α,

where

wt = 1.7
√
log log(2t) + 0.72 log(10.4/α) = O

(√
log log(t/α)/t

)
.

▶ More generally, suppose Xt ∼ N(θt, 1). Then,

P

(
∀t ≥ 1 :

1
t

t∑
i=1

θi ∈

[
1
t

t∑
i=1

Xi − wt,
1
t

t∑
i=1

Xi + wt

])
≥ 1 − α,

with the same wt.
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Main Assumptions
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▶ We work with distribution class P = {Pθ : θ ∈ Θ}.
▶ Possibly infinite dimensional Θ endowed with metric d.
▶ P0 = Pθ0 and P1 = Pθ1 for θ0, θ1 such that d(θ0, θ1) > 0.

Assumptions

1. Uniformly decaying width: We can construct a CS
{Ct(θ) : t ≥ 1} for all θ ∈ Θ, satisfying

sup
θ∈Θ

sup
θ′,θ′′∈Ct(θ)

d(θ′, θ′′) ≤ wt ≡ wt(Θ, α),

such that limt→∞ wt = 0.

2. Enough pre-change data: Under H1, the changepoint T is
large enough to ensure wT < ∆ := d(θ1, θ0).



Overview of our results

8

If we can construct
a CS for θ ⇒ We can detect

changes in θ



Overview of our results
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If we can construct
a CS for θ ⇒ We can detect

changes in θ

▶ Scheme 1: Uses a single forward CS (FCS).
▶ strong false alarm control (PFA)
▶ weak guarantees on detection delay

▶ Scheme 2: Combines one FCS with a new backward CS (BCS) every
round.
▶ non-asymptotic guarantees over ARL
▶ tight control over the expected detection delay

▶ Addresses several classical and modern problems in a unified manner.
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II. Scheme 1: FCS-Detector
▶ The general strategy

▶ Performance Analysis

▶ Drawbacks



The FCS-Detector
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▶ Observations X1,X2, . . .

▶ Construct one forward CS {Ct : t ≥ 1} using the observations.

▶ After changepoint T, the CS tracks θ̃t =
T
t θ0 +

t−T
t θ1.

▶ For t > T, the term θ̃t drifts away from θ0. Stop as soon as
the CS becomes inconsistent.

▶ Formally, we define

τ = inf{n ≥ 1 : ∩n
t=1Ct = ∅}.



The FCS-Detector
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The FCS-Detector
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Performance Guarantees

▶ Control over the probability of false alarm (PFA):

Under H0 : P (τ < ∞) ≤ α.

▶ Control over the detection delay under H1:

▶ If wt = O
(√

log log t/t
)

, then

(τ − T)+ = Õ
(√

T
)
, w.p. ≥ 1 − α.

▶ The result also generalizes to arbitrary wt → 0 (backup slides).
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Empirical Performance
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(τ − T)+ = Õ
(√

T
)
, w.p. ≥ 1 − α.



Summary of FCS-Detector

14

▶ Pros.
▶ Strong control of false alarms.
▶ Computationally efficient — usually linear in τ .

▶ Cons.
▶ Weak control over detection delay.
▶ Can be made arbitrarily large by increasing T.



Summary of FCS-Detector
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▶ Pros.
▶ Strong control of false alarms.
▶ Computationally efficient — usually linear in τ .

▶ Cons.
▶ Weak control over detection delay.
▶ Can be made arbitrarily large by increasing T.

Our next method achieves a better trade-off between control over
false alarms and detection delays.
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III. Scheme 2: BCS-Detector
▶ Backward Confidence Sequences (BCS)

▶ The general strategy

▶ Performance Analysis



Backward Confidence Sequences (BCS)
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Given X1,X2, . . . ,Xn
i.i.d.∼ Pθ, a ‘backward CS’ for θ is a collection

of sets {B(n)
t : t ∈ [n]} satisfying:

▶ B(n)
t is σ(Xt,Xt+1, . . . ,Xn) measurable, and

▶ P(∀t ∈ [n] : θ ∈ B(n)
t ) ≥ 1 − α.



Backward Confidence Sequences (BCS)

16

Given X1,X2, . . . ,Xn
i.i.d.∼ Pθ, a ‘backward CS’ for θ is a collection

of sets {B(n)
t : t ∈ [n]} satisfying:

▶ B(n)
t is σ(Xt,Xt+1, . . . ,Xn) measurable, and

▶ P(∀t ∈ [n] : θ ∈ B(n)
t ) ≥ 1 − α.

In practice, we can construct a BCS in the following steps:
▶ Flip the observations:

Y1 = Xn, . . .Yt = Xn+1−t, . . .Yn = X1.

▶ Construct a usual (forward) CS {Ct : t ∈ [n]} using Y1, . . . ,Yn.
▶ Flip the index of the CS:

B(n)
1 = Cn, . . . ,B(n)

t = Cn+1−t, . . . B(n)
n = C1.



Backward Confidence Sequences (BCS)

16

Given X1,X2, . . . ,Xn
i.i.d.∼ Pθ, a ‘backward CS’ for θ is a collection

of sets {B(n)
t : t ∈ [n]} satisfying:

▶ B(n)
t is σ(Xt,Xt+1, . . . ,Xn) measurable, and

▶ P(∀t ∈ [n] : θ ∈ B(n)
t ) ≥ 1 − α.

0 200 400 600 800 1,000 1,200 1,400

Backward CSs at n = 500, 1000, 1500



The BCS-Detector

17

▶ Construct one forward CS.
▶ Construct a new backward CS every round.
▶ Stop the first time when the FCS and BCS disagree.
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▶ Construct one forward CS.
▶ Construct a new backward CS every round.
▶ Stop the first time when the FCS and BCS disagree.

Formally, we define

τ = inf
{

n ≥ 1 : ∩n
i,j=1Ci ∩ B(n)

j = ∅
}
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▶ Construct one forward CS.
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Performance Guarantees

▶ Control over the ARL:

Under H0 : E [τ ] ≥ 1/2α− 3/2.

▶ Control over the detection delay under H1:

▶ Introduce the “good event”: E = {∀t ≤ T : θ0 ∈ Ct}.

▶ If wt = O
(√

log log t/t
)

, then

E[(τ − T)+|E] = O
(
log log(1/∆)

∆2

)
where ∆ = d(θ0, θ1).

▶ Can generalize to arbitrary wt → 0 (next slide).
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Detection Delay Analysis: general wt
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For general wt → 0, we have

E[(τ − T)+|E ] = O
(
inf {t − T : wT + wt−T < d (θ0, θ1)}

)
.

Main Idea

▶ Recall that τ is the first time at which FCS and BCS disagree:

min t ≥ 1 :
t⋂

i,j=1
Ci ∩ B(t)

j = ∅.

▶ Define t∗ as the first t > T, such that FCS and BCS disagree
at T:

min t > T : CT ∩ B(t)
T = ∅.

▶ By definition, (τ − T)+ ≤ t∗ − T.
▶ t∗ is easier to bound.



Detection Delay Analysis: general wt
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wT

wt−T

θ0

θ1

(Θ, d)

Bound t∗ by the first t s.t.
wt−T + wT < d(θ1, θ0)

i.e., when the balls centered
at θ0 and θ1 become disjoint



Applications
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▶ Mean-shift detection with univariate Gaussians
▶ Pθ0 = N(θ0, 1), and Pθ1 = N(θ1, 1), with ∆ = |θ1 − θ0|.

▶ Mean-shift detection with bounded observations
▶ Pθ0 and Pθ1 , supported on [0, 1] with ∆ = |θ1 − θ0|.

▶ Changes in CDF
▶ ∆ = dKS(θ0, θ1), with θi = CDF of Pθi .

▶ Two-sample changepoint detection
▶ θ0 = P × P, θ1 = P × Q, and ∆ = MMD(P,Q).

▶ Several other problems: distribution shifts in ML, nonparametric
regression, exponential family.



Applications
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E[(τ − T)+|E ] = O
(
log log(1/∆)

∆2

)
where ∆ = d(θ0, θ1).
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Conclusion and Future Work
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▶ We developed two simple SCD schemes based on CSs

▶ Scheme1: FCS-Detector
▶ controls PFA under H0, poor detection delay under H1, low

computational cost

▶ Scheme 2: BCS-Detector
▶ controls ARL under H0, tight detection delay under H1, high

computational cost

▶ Addresses several problems in a unified manner

Future Directions

▶ Estimating the changepoint T

▶ Estimating the change magnitude ∆ = d(θ0, θ1)

▶ Reducing the computational cost of BCS-Detector
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Thank You.

Reference: S. Shekhar and A. Ramdas, “Sequential
changepoint detection via backward confidence sequences”.
ICML 2023.
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Backup Slides
▶ T and ∆ estimation

▶ Details of Assumptions

▶ Detection Delay of FCS-Detector



Changepoint and Change Magnitude Estimation

▶ We can estimate the changepoint as the time at which forward and
backward CS disagree the most.

T̂ = max argmax
1≤t≤τ

d(Ct,B(τ)
t ).

▶ The maximum distance between points in CT̂ and B(τ)

T̂ gives an
upper bound on the change magnitude ∆.

∆̂ = max
θ∈CT̂,θ

′∈B(τ)

T̂

d(θ, θ′)

24



Changepoint and Change Magnitude Estimation
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Assumptions
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θ

γ

ω

(Θ, d)

Assumption 1: CS for all θ ∈ Θ
after t observations are contained
in balls of radius wt ≡ wt(Θ, α).
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wT

θ0

θ1

(Θ, d)

Assumption 2: There are
enough pre-change data to ensure
wT < d(θ0, θ1).
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wT

θ0

θ1

(Θ, d)

Assumption 2: There are
enough pre-change data to ensure
wT < d(θ0, θ1).

Insufficient pre-change
data!



Detection Delay Analysis of FCS-Detector
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Main Idea

▶ Recall that τ is the first t, such that ∩n
i=1Ci = ∅.

▶ Define t∗ as the first t ≥ T, such that Ct ∩ CT = ∅

▶ Note that τ ≤ t∗

▶ Bounding t∗ is easier



Detection Delay Analysis of FCS-Detector
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wT

θ0

θ1

(Θ, d) Width of CS at
changepoint T



Detection Delay Analysis of FCS-Detector
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wT

wt

θ0

θ1

θ̃t

(Θ, d) For t just after T



Detection Delay Analysis of FCS-Detector
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wT

wt

θ0

θ1

θ̃t

(Θ, d)

As t increases:
▶ FCS tracks

θ̃t =
T
t θ0 +

t−T
t θ1

▶ θ̃t drifts away from
θ0

▶ wt decreases



Detection Delay Analysis of FCS-Detector
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wT

wt∗

θ0

θ1

θ̃t∗

(Θ, d) Stops before t∗:
wt∗ + wT < d(θ̃t∗, θ0)
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