Sequential Changepoint Detection via Backward Confidence Sequences

Shubhanshu Shekhar and Aaditya Ramdas

Department of Statistics and Data Science

Carnegie Mellon University

I. Sequential Changepoint Detection

Problem Definition

Confidence Sequences (CSs)

Assumptions

Sequential Changepoint Detection

Stream of independent \mathcal{X} -valued observations: X_1, X_2, \ldots

- For some $T \in \mathbb{N} \cup \{\infty\}$:
 - $X_t \sim P_0$ for $t \leq T$, and
 - $X_t \sim P_1 \neq P_0 \text{ for } t > T.$

Mild requirements on the distributions:

- **b** Both P_0, P_1 are unknown, and
- ▶ $P_0, P_1 \in \mathcal{P}$ for some known class of distributions \mathcal{P} .

Decide between

$$H_0: T = \infty$$
, versus $H_1: T < \infty$.

- **• Objective:** Define a stopping time τ to declare a detection, that
 - minimizes false alarms under H₀, and
 - has a small detection delay, $(\tau T)^+$, under H_1

Performance Measures

Performance Measures

When $T < \infty$

Ensure that

• $(\tau - T)^+$ is small, either in expectation or with high probability.

▶ The guarantee should hold for worst case choice of *T*.

Main Technical Tool: Confidence Sequences

Suppose X₁, X₂,... ~ P_θ i.i.d. with θ ∈ Θ.
{C_t ⊂ Θ : t ≥ 1} is a level-(1 − α) CS for θ, if
$$\mathbb{P}(\forall t ≥ 1 : θ ∈ C_t) ≥ 1 − α \equiv \mathbb{P}(\exists t ≥ 1 : θ ∉ C_t) ≤ α.$$

Main Technical Tool: Confidence Sequences

▶ The i.i.d. assumption is not necessary.

Main Technical Tool: Confidence Sequences

▶ The i.i.d. assumption is not necessary.

Example: CS for Gaussian mean

Suppose
$$X_1, X_2, \dots \stackrel{i.i.d.}{\sim} N(\theta, 1)$$
. Then, we have

$$\mathbb{P}\left(\forall t \ge 1: \ \theta \in \left[\frac{1}{t} \sum_{i=1}^t X_i - w_t, \ \frac{1}{t} \sum_{i=1}^t X_i + w_t\right]\right) \ge 1 - \alpha,$$

where

$$\mathbf{w}_t = 1.7\sqrt{\log\log(2t) + 0.72\log(10.4/\alpha)} = \mathcal{O}\left(\sqrt{\log\log(t/\alpha)/t}\right).$$

Howard et al. (2021).

Example: CS for Gaussian mean

Suppose
$$X_1, X_2, \dots \stackrel{i.i.d.}{\sim} N(\theta, 1)$$
. Then, we have

$$\mathbb{P}\left(\forall t \ge 1: \ \theta \in \left[\frac{1}{t} \sum_{i=1}^t X_i - w_t, \ \frac{1}{t} \sum_{i=1}^t X_i + w_t\right]\right) \ge 1 - \alpha,$$

where

$$w_t = 1.7\sqrt{\log\log(2t) + 0.72\log(10.4/\alpha)} = \mathcal{O}\left(\sqrt{\log\log(t/\alpha)/t}\right).$$

• More generally, suppose $X_t \sim N(\theta_t, 1)$. Then,

$$\mathbb{P}\left(\forall t \geq 1: \frac{1}{t} \sum_{i=1}^{t} \theta_i \in \left[\frac{1}{t} \sum_{i=1}^{t} X_i - w_t, \frac{1}{t} \sum_{i=1}^{t} X_i + w_t\right]\right) \geq 1 - \alpha,$$

with the same w_t .

Howard et al. (2021).

Main Assumptions

- We work with distribution class $\mathcal{P} = \{ P_{\theta} : \theta \in \Theta \}.$
- ▶ Possibly infinite dimensional Θ endowed with metric *d*.
- ▶ $P_0 = P_{\theta_0}$ and $P_1 = P_{\theta_1}$ for θ_0, θ_1 such that $d(\theta_0, \theta_1) > 0$.

Assumptions

1. Uniformly decaying width: We can construct a CS $\{C_t(\theta) : t \ge 1\}$ for all $\theta \in \Theta$, satisfying

$$\sup_{\theta \in \Theta} \sup_{\theta', \theta'' \in C_t(\theta)} d(\theta', \theta'') \leq w_t \equiv w_t(\Theta, \alpha)$$

such that $\lim_{t\to\infty} w_t = 0$.

2. Enough pre-change data: Under H_1 , the changepoint T is large enough to ensure $w_T < \Delta := d(\theta_1, \theta_0)$.

Overview of our results

If we can construct a CS for $\boldsymbol{\theta}$

We can detect changes in θ

Overview of our results

- Scheme 1: Uses a single forward CS (FCS).
 - strong false alarm control (PFA)
 - weak guarantees on detection delay
- Scheme 2: Combines one FCS with a new backward CS (BCS) every round.
 - non-asymptotic guarantees over ARL
 - tight control over the expected detection delay

Addresses several classical and modern problems in a unified manner.

II. Scheme 1: FCS-Detector

The general strategy

- Performance Analysis
- Drawbacks

Observations X₁, X₂, ...

• Construct one forward CS $\{C_t : t \ge 1\}$ using the observations.

• After changepoint *T*, the CS tracks $\tilde{\theta}_t = \frac{T}{t}\theta_0 + \frac{t-T}{t}\theta_1$.

For t > T, the term θ̃_t drifts away from θ₀. Stop as soon as the CS becomes inconsistent.

Formally, we define

$$\tau = \inf\{n \ge 1 : \bigcap_{t=1}^n C_t = \emptyset\}.$$

t = 500 (prior to changepoint)

$$t = 700$$
 (changepoint at $T = 500$)

$$t = 700$$
 (changepoint at $T = 500$)

$$t = 800$$
 (changepoint at $T = 500$)

$$t = 800$$
 (changepoint at $T = 500$)

Performance Guarantees

Control over the probability of false alarm (PFA):

Under H_0 : $\mathbb{P}(\tau < \infty) \leq \alpha$.

► Control over the detection delay under *H*₁:

• If
$$w_t = \mathcal{O}\left(\sqrt{\log\log t/t}\right)$$
, then
 $(\tau - T)^+ = \widetilde{\mathcal{O}}\left(\sqrt{T}\right), \quad \text{w.p.} \geq 1 - \alpha.$

• The result also generalizes to arbitrary $w_t \rightarrow 0$ (backup slides).

Empirical Performance

$$\left(au - au
ight)^+ = \widetilde{\mathcal{O}} \left(\sqrt{ au}
ight), \quad ext{w.p.} \ \geq 1 - lpha.$$

Summary of FCS-Detector

► Pros.

- Strong control of false alarms.
- Computationally efficient usually linear in τ .

Cons.

- Weak control over detection delay.
- Can be made arbitrarily large by increasing *T*.

Summary of FCS-Detector

► Pros.

- Strong control of false alarms.
- Computationally efficient usually linear in τ .

Cons.

- Weak control over detection delay.
- Can be made arbitrarily large by increasing *T*.

Our next method achieves a better trade-off between control over false alarms and detection delays.

III. Scheme 2: BCS-Detector

Backward Confidence Sequences (BCS)

- The general strategy
- Performance Analysis

Backward Confidence Sequences (BCS)

Given $X_1, X_2, \ldots, X_n \stackrel{i.i.d.}{\sim} P_{\theta}$, a 'backward CS' for θ is a collection of sets $\{B_t^{(n)} : t \in [n]\}$ satisfying: $B_t^{(n)}$ is $\sigma(X_t, X_{t+1}, \ldots, X_n)$ measurable, and $\mathbb{P}(\forall t \in [n] : \theta \in B_t^{(n)}) \ge 1 - \alpha.$

Backward Confidence Sequences (BCS)

Given $X_1, X_2, \ldots, X_n \stackrel{i.i.d.}{\sim} P_{\theta}$, a 'backward CS' for θ is a collection of sets $\{B_t^{(n)} : t \in [n]\}$ satisfying: $B_t^{(n)}$ is $\sigma(X_t, X_{t+1}, \ldots, X_n)$ measurable, and $\mathbb{P}(\forall t \in [n] : \theta \in B_t^{(n)}) \ge 1 - \alpha.$

In practice, we can construct a BCS in the following steps:

Flip the observations:

$$Y_1 = X_n, \ldots Y_t = X_{n+1-t}, \ldots Y_n = X_1.$$

Construct a usual (forward) CS {Ct : t ∈ [n]} using Y1,..., Yn.
Flip the index of the CS:

$$B_1^{(n)} = C_n, \ldots, B_t^{(n)} = C_{n+1-t}, \ldots, B_n^{(n)} = C_1.$$

Backward Confidence Sequences (BCS)

Given $X_1, X_2, \ldots, X_n \stackrel{i.i.d.}{\sim} P_{\theta}$, a 'backward CS' for θ is a collection of sets $\{B_t^{(n)} : t \in [n]\}$ satisfying: $B_t^{(n)}$ is $\sigma(X_t, X_{t+1}, \ldots, X_n)$ measurable, and $\mathbb{P}(\forall t \in [n] : \theta \in B_t^{(n)}) \ge 1 - \alpha.$

Backward CSs at n = 500, 1000, 1500

Construct one forward CS.

Construct a new backward CS every round.

Stop the first time when the FCS and BCS disagree.

- Construct one forward CS.
- Construct a new backward CS every round.
- Stop the first time when the FCS and BCS disagree.

Formally, we define

$$\tau = \inf\left\{n \ge 1 : \cap_{i,j=1}^n C_i \cap B_j^{(n)} = \emptyset\right\}$$

- Construct one forward CS.
- Construct a new backward CS every round.
- Stop the first time when the FCS and BCS disagree.

- Construct one forward CS.
- Construct a new backward CS every round.
- Stop the first time when the FCS and BCS disagree.

- Construct one forward CS.
- Construct a new backward CS every round.
- Stop the first time when the FCS and BCS disagree.

Performance Guarantees

Control over the ARL:

Under
$$H_0$$
: $\mathbb{E}[\tau] \geq 1/2\alpha - 3/2$.

Control over the detection delay under H₁:

▶ Introduce the "good event": $\mathcal{E} = \{ \forall t \leq T : \theta_0 \in C_t \}.$

• If
$$w_t = \mathcal{O}\left(\sqrt{\log \log t/t}\right)$$
, then
 $\mathbb{E}[(\tau - T)^+ | \mathcal{E}] = \mathcal{O}\left(\frac{\log \log(1/\Delta)}{\Delta^2}\right)$ where $\Delta = d(\theta_0, \theta_1)$.

• Can generalize to arbitrary $w_t \rightarrow 0$ (next slide).

Detection Delay Analysis: general w_t

Detection Delay Analysis: general w_t

Applications

Mean-shift detection with univariate Gaussians

 $\blacktriangleright P_{\theta_0} = \mathit{N}(\theta_0, 1) \text{, and } P_{\theta_1} = \mathit{N}(\theta_1, 1) \text{, with } \Delta = |\theta_1 - \theta_0|.$

- Mean-shift detection with bounded observations
 P_{θ₀} and P_{θ₁}, supported on [0, 1] with Δ = |θ₁ − θ₀|.
- Changes in CDF

•
$$\Delta = d_{KS}(\theta_0, \theta_1)$$
, with $\theta_i = \text{CDF}$ of P_{θ_i} .

- Two-sample changepoint detection
 - $\theta_0 = P \times P$, $\theta_1 = P \times Q$, and $\Delta = MMD(P, Q)$.
- Several other problems: distribution shifts in ML, nonparametric regression, exponential family.

Applications

$$\mathbb{E}[(\tau - T)^+ | \mathcal{E}] = \mathcal{O}\left(\frac{\log \log(1/\Delta)}{\Delta^2}\right) \text{ where } \Delta = \textit{d}(\theta_0, \theta_1).$$

Delay vs Change Magnitude

Conclusion and Future Work

- We developed two simple SCD schemes based on CSs
- Scheme1: FCS-Detector
 - controls PFA under H₀, poor detection delay under H₁, low computational cost
- Scheme 2: BCS-Detector
 - controls ARL under H₀, tight detection delay under H₁, high computational cost
- Addresses several problems in a unified manner

Future Directions

- Estimating the changepoint T
- Estimating the change magnitude $\Delta = d(\theta_0, \theta_1)$

Reducing the computational cost of BCS-Detector

Thank You.

Reference: S. Shekhar and A. Ramdas, "Sequential changepoint detection via backward confidence sequences". ICML 2023.

Backup Slides

- T and Δ estimation
- Details of Assumptions
- Detection Delay of FCS-Detector

Changepoint and Change Magnitude Estimation

We can estimate the changepoint as the time at which forward and backward CS disagree the most.

$$\widehat{T} = \max \underset{1 \leq t \leq \tau}{\arg \max} d(C_t, B_t^{(\tau)}).$$

The maximum distance between points in C_τ and B_τ^(τ) gives an upper bound on the change magnitude Δ.

$$\widehat{\Delta} = \max_{ heta \in C_{\widehat{T}}, heta' \in B_{\widehat{T}}^{(au)}} d(heta, heta')$$

Changepoint and Change Magnitude Estimation

Assumption 1: CS for all $\theta \in \Theta$ after *t* observations are contained in balls of radius $w_t \equiv w_t(\Theta, \alpha)$.

Assumption 1: CS for all $\theta \in \Theta$ after *t* observations are contained in balls of radius $w_t \equiv w_t(\Theta, \alpha)$.

Assumption 2: There are enough pre-change data to ensure $w_T < d(\theta_0, \theta_1)$.

 (Θ, d)

 θ_1

 θ_0

WT

Assumption 2: There are enough pre-change data to ensure $w_T < d(\theta_0, \theta_1)$.

