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Sequential Changepoint Detection
» Stream of independent X-valued observations: X1, X5, ...

» For some T € NU {oo}:
» X~ Py for t< T, and
» Xy~ Py # Py for t > T.

» Mild requirements on the distributions:

» Both Py, P1 are unknown, and
» Py, P, € P for some known class of distributions P.

» Decide between
Hy: T=o00, wversus H;: T< .
» Objective: Define a stopping time 7 to declare a detection, that

» minimizes false alarms under Hp, and
> has a small detection delay, (7 — T)", under H;



Performance Measures

When T = oo (no changepoint)

For an o € (0,1), control
> Average Run Length (ARL): Eo[7] > 1, or

» the Probability of False Alarm (PFA): P (7 < o0) < o




Performance Measures

When T = oo (no changepoint)

For an o € (0,1), control
> Average Run Length (ARL): Eo[7] > 1, or

» the Probability of False Alarm (PFA): P (7 < o0) < o

Ensure that

» (7 — T)* is small, either in expectation or with high
probability.

» The guarantee should hold for worst case choice of T.




Main Technical Tool: Confidence Sequences

» Suppose X1, X5,...~ Py i.id. with 8 € ©.
» {C;C©O©:t>1}is alevel-(1 —«) CS for 0, if

PVt>1:0eG)>1—-a = P(Et>1:0€C)<a.
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Main Technical Tool: Confidence Sequences

» Suppose X1, X5,...~ Py i.id. with 8 € ©.
» {C;C©O©:t>1}is alevel-(1 —«) CS for 0, if

PVt>1:0eG)>1—-a = P(Et>1:0€C)<a.

» The i.i.d. assumption is not necessary.

» Suppose Xi, X, ... are independent, with X; ~ Py,.
> {CG;CcO:t>1}isalevel-(1—a) CS for 6, == %Zle 0;, if

]P’(Vtgl:@te Ct)21—a = ]P’(Eltzlzgt¢Ct)§a.




Example: CS for Gaussian mean

"% N(6,1). Then, we have

yi 1<
P(Vtgl: 0e lt;X,—wt,t;x,-+wt

> Z 1- «,
where

w, = 1.7\/log log(21) + 0.72log(10.4/a) = O (\/Iog Iog(t/a)/t> .

» Suppose X1, Xs, ...

Howard et al. (2021).



Example: CS for Gaussian mean

ii.d.

> Suppose X1, Xp,... ~ N(6,1). Then, we have

yi 1<
P(Vtgl: 0e lt;X,—wt,t;x,-+wt

> Z 1- «,
where

w, = 1.7y/log log(21) + 0.72log(10.4/a) = O (\/Iog Iog(t/a)/t> .

)21—0[,

> More generally, suppose X; ~ N(6;,1). Then,

1< 1< 1<
P(VtZIZ E;@;E ;;Xi—wt,?;xi—FWt

with the same w;.

Howard et al. (2021).



Main Assumptions

> We work with distribution class P = {Py : § € ©}.
» Possibly infinite dimensional © endowed with metric d.
» Py = Py, and Py = Py, for 6y, 601 such that d(6o,01) > 0.

1. Uniformly decaying width: We can construct a CS
{Ce(0) : t > 1} for all § € ©, satisfying

sup  sup  d(0',0") < wy=wi(O, ),
0€© 97,0 Cy(6)

such that lim; ., w; = 0.

2. Enough pre-change data: Under Hi, the changepoint T is
large enough to ensure wr < A = d(61, 6p).




Overview of our results

If we can construct
a CS for 0

=

We can
changes in 6

detect




Overview of our results

If we can construct é We can  detect
a CS for 0 ] changes in 6

» Scheme 1: Uses a single forward CS (FCS).

» strong false alarm control (PFA)
> weak guarantees on detection delay

» Scheme 2: Combines one FCS with a new backward CS (BCS) every
round.

» non-asymptotic guarantees over ARL
> tight control over the expected detection delay

» Addresses several classical and modern problems in a unified manner.



II. Scheme 1: FCS-Detector

» The general strategy
» Performance Analysis

» Drawbacks



The FCS-Detector

» Observations X1, Xo, ...

» After changepoint T, the CS tracks 5t = TGO + 1L 01

» For t > T, the term (Z drifts away from 6. Stop as soon as
the CS becomes inconsistent.

» Formally, we define

T=inf{n>1:N,C =0}

» Construct one forward CS {C; : t > 1} using the observations.
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The FCS-Detector

Confidence Sequence (CS)

t = 500 (prior to changepoint)
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The FCS-Detector

t = 700 (changepoint at T = 500)

Confidence Sequence (CS)
|

"'5t=%—90+t;j91
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The FCS-Detector

t = 700 (changepoint at T = 500)

Confidence Sequence (CS)
|

"'5t=%—90+t;j91
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The FCS-Detector

t = 800 (changepoint at T = 500)

Confidence Sequence (CS)
|

"'5t=%—90+t;j91
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The FCS-Detector

t = 800 (changepoint at T = 500)

Confidence Sequence (CS)
|

"'5t=%—90+t;j91
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Number of observations (t)
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Performance Guarantees

> Control over the probability of false alarm (PFA):

Under Hp : P (7 < 0) < .

» Control over the detection delay under Hs:

> I wt:O<\/W),then
(7'*T)+:(5(ﬁ), w.p. >1—a.

» The result also generalizes to arbitrary wy — 0 (backup slides).

12



Empirical Performance

Delay of FCS-Detector

(7_7')+:(§(\/7'), wp. >1—a.

led
50l — A=0.09
—— A=0.14
—— A=0.19
159 — A=0.24

Changepoint T 1le5
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Summary of FCS-Detector

» Pros.

> Strong control of false alarms.
» Computationally efficient — usually linear in 7.

» Cons.

» Weak control over detection delay.
» Can be made arbitrarily large by increasing T.

14



Summary of FCS-Detector

» Pros.

» Strong control of false alarms.
» Computationally efficient — usually linear in 7.

» Cons.

» Weak control over detection delay.
» Can be made arbitrarily large by increasing T.

Our next method achieves a better trade-off between control over
false alarms and detection delays.

14



[1l. Scheme 2: BCS-Detector

» Backward Confidence Sequences (BCS)
» The general strategy

» Performance Analysis
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Backward Confidence Sequences (BCS)

Given X1, X5,..., X, Hid Py, a ‘backward CS’ for 8 is a collection
of sets {Bg") . t € [n]} satisfying:
> Bg") is o(X¢, Xe11, - - -, Xn) measurable, and

> P(vte[n]:0eB")>1—a.

16



Backward Confidence Sequences (BCS)

Given X1, X5,..., X, o Py, a ‘backward CS’ for 6 is a collection
of sets {Bg") . t € [n]} satisfying:
> Bg") is o(X¢, Xe11, - - -, Xn) measurable, and

> P(vVte[n]:0e€B")>1—a.

In practice, we can construct a BCS in the following steps:
» Flip the observations:

Y1:Xn, "'Yt:Xn+1—ta ...Yn:X]_.

» Construct a usual (forward) CS {C; : t € [n]} using Yi,..., Ya.
» Flip the index of the CS:

B =¢C, ..., B = Cop1r,... B =G

16



Backward Confidence Sequences (BCS)

Given X1, X5,..., X, o Py, a ‘backward CS’ for 6 is a collection
of sets {Bg") . t € [n]} satisfying:
> Bg") is o(X¢, Xe11, - - -, Xn) measurable, and

> P(vVte[n]:0e€B")>1—a.

Backward CSs at n = 500, 1000, 1500

\ \ \ \ \ \
0 200 400 600 800 1,000 1,200 1,400 16



The BCS-Detector

» Construct one forward CS.
» Construct a new backward CS every round.
» Stop the first time when the FCS and BCS disagree.

17



The BCS-Detector

» Construct one forward CS.
» Construct a new backward CS every round.

» Stop the first time when the FCS and BCS disagree.

Formally, we define

ij=

T:inf{nzlzﬂ-" 1Ciﬂ3§"):@}
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The BCS-Detector

» Construct one forward CS.

» Construct a new backward CS every round.
» Stop the first time when the FCS and BCS disagree.
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The BCS-Detector

» Construct one forward CS.
» Construct a new backward CS every round.
» Stop the first time when the FCS and BCS disagree.

Lg"l’
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The BCS-Detector

» Construct one forward CS.
» Construct a new backward CS every round.
» Stop the first time when the FCS and BCS disagree.
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Performance Guarantees

» Control over the ARL:
Under Hy : E[7] > 1/2a —3/2.
» Control over the detection delay under Hy:
» Introduce the “good event”: £ = {Vt < T: 6y € C}.
> fw,=0 (W), then

E[(- - T)"|€] =0 (%) where A = d(6o, 61).

» Can generalize to arbitrary wy — 0 (next slide).
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Detection Delay Analysis: general w;

For general w; — 0, we have

E[(r — T)"|€] = O(inf{l’— T:wr+wet< d(90,91)})~

» Recall that 7 is the first time at which FCS and BCS disagree:

t
min t>1: ﬂ C,-OBJ(-t)Z(Z).

ij=1

» Define t* as the first t > T, such that FCS and BCS disagree
at T:
min t>T: CrnBY =0.

» By definition, (1 — T)* < t* - T.

» t* is easier to bound.

10



Detection Delay Analysis: general w;

Bound t* by the first t s.t.
WeT + wr < d(01, 90)

i.e., when the balls centered
at 6y and #; become disjoint

10



Applications

» Mean-shift detection with univariate Gaussians
> P90 = N(@o, 1), and P@l = N(01,1), with A = |91 o (90|.

» Mean-shift detection with bounded observations
» Py, and Pg,, supported on [0, 1] with A = |01 — 6|

» Changes in CDF
> A= sz(Go,Ol), with 0; = CDF of Pgl..

» Two-sample changepoint detection
> go=PxP, 6 =PxQ and A =MMD(P, Q).

> Several other problems: distribution shifts in ML, nonparametric
regression, exponential family.

20



Applications

E[(r— "] =0 (bgbi#) where A = d(6o, 61).

Delay vs Change Magnitude

1,000 | —— Gaussian-mean
—— Bounded-mean
——  CDF change

——  Two-Sample

500

Average Detection Delay
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Conclusion and Future Work

» We developed two simple SCD schemes based on CSs

» Schemel: FCS-Detector

» controls PFA under Hp, poor detection delay under Hi, low
computational cost

» Scheme 2: BCS-Detector

» controls ARL under Hp, tight detection delay under Hi, high
computational cost

» Addresses several problems in a unified manner

Future Directions

» Estimating the changepoint T
» Estimating the change magnitude A = d(6y, 61)

» Reducing the computational cost of BCS-Detector

21



Thank You.

Reference: S. Shekhar and A. Ramdas, “Sequential

changepoint detection via backward confidence sequences”.

ICML 2023.
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Backup Slides

» T and A estimation
» Details of Assumptions

» Detection Delay of FCS-Detector
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Changepoint and Change Magnitude Estimation

» We can estimate the changepoint as the time at which forward and
backward CS disagree the most.

~

T = max argmax d(C, B{™).
1<e<r

» The maximum distance between points in Cs and B(ATT) gives an
upper bound on the change magnitude A.

A= max d6,0)
QEC?,O’EB(;)

24



Changepoint and Change Magnitude Estimation

Changepoint

Change Magnitude

200

1,000

1,800

0
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Assumptions

(©,d)

&
@

Assumption 1: CS for all § € ©
after t observations are contained
in balls of radius w; = w(0©, ).
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Assumptions

Assumption 1: CS for all § € ©
after t observations are contained
in balls of radius w; = w(0©, ).
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Assumptions

Assumption 2: There are
enough pre-change data to ensure
wr < d(g(), 01)
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Assumptions

(©,d)

Assumption 2: There are
enough pre-change data to ensure
wr < d(90, 01)

Insufficient pre-change
datal
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Detection Delay Analysis of FCS-Detector

> Recall that 7 is the first t, such that N?_; C; = 0.

» Define t* as the first t > T, such that G;N Cr =0
» Note that 7 < t*

» Bounding t* is easier

26



Detection Delay Analysis of FCS-Detector

Width of CS at
changepoint T
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Detection Delay Analysis of FCS-Detector

For t just after T
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Detection Delay Analysis of FCS-Detector
As t increases:

> ECS tracks
0 = Lo+ =10y
> gt drifts away from
to

» w; decreases
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Detection Delay Analysis of FCS-Detector

Stops before t*:
We + wr < d(Qt*, 90)
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